
The Design and Implementation of the

GraPE

Graphical Proof Editor

Max Schäfer

Abstract

We present GraPE, a graphical proof editor that strives to provide a
unified point-and-click interface for a variety of existing theorem provers
and supports advanced proof editing features. It strictly separates the
graphical user interface responsible for displaying the derivation being
worked on from the actual proof engine, yielding a flexible and powerful
theorem proving environment. Unlike many other proof editors, GraPE
not only supports inference rules for incrementally building a derivation
but also more complex proof generation and manipulation operations,
such as automatic proof search and elimination of admissible rules. GraPE
provides particularly strong support for the calculus of structures and for
integration with the Maude language. We show how this support can
be leveraged to quickly and easily obtain a graphical theorem prover for
system KSg for classical propositional logic.

1 Introduction

Graphical proof editors have long been the subject of research and implemen-
tation efforts [26, 24]. For our purposes, the existing systems can be classified
into two categories:

1. graphical user interfaces designed to work with one specific theorem prover

2. independent graphical user interfaces that can be interfaced to different
underlying theorem provers

Examples from the first group are abundant – suffice it to mention CtCoq [3]
and Alfa [13]. Representatives of the second group are less frequent: Proof
General [2] is a recent example. Other systems such as Jape [4] do maintain a
separation between graphical frontend and prover, but the interface between the
two is often not general enough or not very well documented, thus effectively
making the two components hard to separate. Jape in particular is closely tied
to the sequent calculus and adapting it to other systems such as the calculus of
structures [11, 12] would likely require some fundamental architectural changes.

1

GraPE belongs to the second category: it consists of a general, inference
system agnostic frontend responsible for displaying the current derivation and
handling user interaction, which is interfaced to a theorem prover (the backend)
doing the actual work of building derivations. In particular, GraPE improves
on previous work in three aspects:

1. Frontend and backend are clearly separated and communicate using a sim-
ple protocol documented in this paper, which makes the implementation
of new backends easy.

2. A very versatile backend based on the Maude language [7, 8], called
GraPE2Maude, is provided, which gives access to a suite of already im-
plemented theorem provers for systems in the calculus of structures [17].

3. Backends can not only provide simple inference rules but also more com-
plicated proof search and manipulation procedures.

The first feature is by no means new, it has for example been discussed
at length in [26]. However, none of the theorem provers we are familiar with
actually provides a good implementation of this principle.

The second feature, which extends earlier work by Kahramanoğulları [16], is
not part of GraPE per se, but is interesting in its own right. Maude provides
a convenient, high-level way of implementing easily understandable yet quite
fast theorem provers especially for systems in the calculus of structures. This
backend makes it easy to use and modify already existing implementations, but
also to experiment with new inference systems and explore them interactively.

The third point, finally, has not received the attention in the literature we
think it deserves. To the best of our knowledge, existing proof editors rarely
support any kind of proof manipulation beyond simple changes in graphical rep-
resentation (for example reformatting a sequent calculus derivation into natural
deduction style as supported by Jape). Mostly, they present a derivation as
a list of goals (i.e., as yet unproved premises); the application of an inference
rule results in adding zero or more new premises to this list, while discharging a
previously open goal. No representation of the derivation as a whole is provided.

GraPE, on the other hand, gives the prover full access to the derivation under
construction, and allows rules to change the derivation in an arbitrary way.
This is the basis for implementing proof manipulation procedures to eliminate
admissible rules or even full-blown cut elimination.

2 An Example: Propositional Logic with Sys-
tem KSg

As a concrete example of how to use GraPE we show a sample session of the
program in which we utilize a Maude implementation of system KSg of the
calculus of structures to prove two simple theorems of classical propositional
logic.

2

To begin with, we give a short introduction to the calculus of structures and
system KSg.

2.1 The Calculus of Structures

The calculus of structures [11, 12] is a generalization of the sequent calculus.
Compared to the sequent calculus, it introduces a number of new concepts:

Structures The notions of formula and sequent are merged into the notion of
structure, which is intermediate between a sequent and a formula.

Deep Inference In the calculus of structures, inference rules can be applied
at any depth inside a structure, not only at the topmost connective as in
the sequent calculus.

Proof Chains Each inference rule only has a single premise, thus there is no
branching as in sequent calculus proofs, and indeed it is not needed: in the
sequent calculus, the main purpose of branching rules is to bring deeper
lying connectives to the top and subject them to inference rules; with deep
inference, this can be accomplished more directly.

Symmetry As a consequence, inference rules and derivations are symmetric
between premise and conclusion. This symmetry has many interesting
proof-theoretical consequences; in particular, every inference rule can be
dualized.

Equational Theory Structures are viewed modulo a congruence relation in-
duced by an equational theory. Each inference system comes with its own
equational theory, usually containing laws for, e.g., commutativity and
associativity of logical operators. Two formulae which are equivalent un-
der the equational theory can be seen as two representatives of the same
structure.

Inference rules in the calculus of structures are given as schemata of the form

S{T}
ρ

S{R}

where S{T} is the rule’s premise, ρ its name, and S{R} the conclusion. Here,
S{ } stands for a structure with a “hole”, i.e. exactly one operand position inside
the structure, which occurs in the scope of an even number of negations, contains
the placeholder { }. The schema S{T} is obtained by plugging structure schema
T into that hole.

An instance of a rule schema is obtained by replacing the structure schemata
T and R with actual structures respecting their schema. A chain of inference
rule instances of the form

3

R0ρ1
R1

...ρn
Rn

where n ≥ 0, is called a derivation. In analogy to rule schemata, we also call
R0 the derivation’s premise, and Rn its conclusion.

From a term rewriting point of view, the S{ } in the rule schema can be seen
as expressing a position inside a structure. Reading the rule bottom up (the
usual direction during proof search), we can then interpret it as saying that
a substructure R at this position can be rewritten to a structure T . Indeed,
this viewpoint can be exploited when implementing theorem provers for deep
inference systems in a term rewriting language [15], as is done in our example.
In keeping with term rewriting terminology, we will often refer to the structure
substituted for R in a rule application as the redex, and to the one substituted
for T as the contractum.

2.2 The Systems KSg and SKSg

The calculus of structures accommodates many different inference systems for
many different logics (some references are given later). As examples of deep
inference systems, we will take a look at system KSg and its extension SKSg,
following [5] and [16].

System KSg is an inference system for classical propositional logic. Its lan-
guage contains a countable set A of atoms denoted by lowercase letters. KSg
structures are generated by the production

R ::= tt | ff | A | R | [R,R] | (R,R)

Here, (R,R) stands for conjunction, [R,R] for disjunction, and R for nega-
tion. The two logical constants truth and falsity are written tt and ff.

The equational theory underlying KSg is given in Figure 1. It states that
conjunction and disjunction are associative and commutative with tt and ff as
their respective units, and also contains the De Morgan rules and the involu-
tion law. Although conjunction and disjunction have been defined as binary
operators, associativity allows us to denote them in n-ary form and save some
brackets, writing (a, b, c) for ((a, b), c) and (a, (b, c)).

By application of these rules, we obtain, for example,

[a, b, ff] ≈ (a, b, ff) ≈ (a, b, tt) ≈ (a, b)

which means that the two formulae [a, b, ff] and (a, b) are representatives of the
same structure.

In fact, the equational system allows us to always pick a representative in
negation normal form (i.e., where negation is only applied to atoms) in every
structure.

4

Associativity Commutativity

[[R, T], U] ≈ [R, [T,U]] [R, T] ≈ [T,R]
((R, T), U) ≈ (R, (T,U)) (R, T) ≈ (T,R)

Units Negation

(ff, ff) ≈ ff ff ≈ tt

[tt, tt] ≈ tt tt ≈ ff

[ff, R] ≈ R [R, T] ≈ (R, T)

(tt, R) ≈ R (R, T) ≈ [R, T]

R ≈ R

Figure 1: The Equational Theory of System KSg

S{tt}
i↓

S[R,R]
S([R,U], T)

s
S[(R, T), U]

S{ff}
w↓

S{R}
S[R,R]

c↓
S{R}

Figure 2: System KSg

The inference rules of system KSg are given in Figure 2; note that we some-
times omit the context brackets { } if the structure schema inside the context
has brackets of its own. For example, we write S[R,R] instead of S{[R,R]}.

Three of the given rules, namely interaction (i↓), weakening (w↓), and con-
traction (c↓), also appear in most sequent calculus systems, whereas switch (s)
is peculiar to the calculus of structures: it does not normally appear in the
sequent calculus, but it is part of every system in the calculus of structures,
for every logic (of course, the precise notions of conjunction and disjunction
involved differ between systems).

The truth constant tt is the only axiom of KSg. Every derivation with tt as
its premise is called a proof. For example, we can use the given rule schemata to
build a proof of the structure [a, a], which corresponds to the classical tautology
a ∨ ¬a:

tti↓
[a, a]

Here, the i↓ rule is applied in an empty context, just as it could be done in the
sequent calculus. But that does not have to be case, as this example shows:

[b, b]
i↓

([b, b], [a, a])

5

S{tt}
i↓

S[R,R]
S(R,R)

i↑
S{ff}

S([R,U], T)
s

S[(R, T), U]
S{ff}

w↓
S{R}

S{R}
w↑

S{tt}
S[R,R]

c↓
S{R}

S{R}
c↑

S(R,R)

Figure 3: System SKSg

Here, the context is ([b, b], {}). The rule instance used is

([b, b], tt)
i↓

([b, b], [a, a])

This instance is in fact the same as the above derivation, since by the equational
theory of KSg, we have ([b, b], tt) ≈ [b, b].

Note that all rule instances of system KSg are sound [5]; the proviso that
the context hole only appear in the scope of an even number of negations is
automatically ensured if formulae are always converted to their negation normal
form.

Each of the rule schemata in fact expresses an implication T ⇒ R inside
a context S{ }. Due to the duality of implication, every rule has a dual rule
expressing the implication R ⇒ T : we can take a sound down rule of the form

S{T}
ρ↓

S{R}

flip it around and negate to obtain another sound up rule of the form

S{R}
ρ↑

S{T}

If we complement the four rules of system KSg with three dual up rules
(switch is its own dual), we obtain a new system, called SKSg (for symmetric
KSg), whose inference rules are shown in Figure 3. Note that such a dualization
of rules is not usually possible in the sequent calculus: many of its rules are
branching, and hence inherently top-down asymmetric.

In a sense, however, SKSg is not more powerful than KSg: as shown in [5],
each proof containing up rules can be converted into one containing only down
rules; the up rules are admissible.

As a final remark, it can be shown [5, 16] that the identity rules can be
reduced to their atomic form, i.e. every application of the rules i↓ and i↑ can be

6

replaced by a sequence of applications of the switch rule and the atomic identity
rules

S{tt}
ai↓

S[a, a]
and S(a, a)

ai↑
S{ff}

For a thorough exposition of the calculus of structures, the reader is referred
to [11], which is the original paper on the calculus of structures. Systems for
classical logic in the calculus of structures are treated in [5], linear logic in the
calculus of structures is investigated in [23], and modal logics are the subject
of [22] and [14].

2.3 A GraPE Session

Now we will show how GraPE can be used to prove two simple propositional
theorems in system KSg and system SKSg, before we go on to explain the
program’s inner workings.

GraPE can be downloaded from the official project homepage [25], where
one can also find installation instructions. When GraPE is invoked, only the
frontend is started at first. The user chooses a system description file for the
system they want to use; we will show later how to create such a description for
system KSg, for the moment we will simply assume that it is already available
(and in fact a ready-to-use copy is included in the GraPE distribution as the
file ksg.xml). The prover corresponding to the chosen system is then started in
the background, and GraPE prompts the user for a theorem to prove.

Suppose we want to prove the simple propositional tautology

((a → b) ∧ a) → b

which is an instance of modus ponens. Written in KSg’s syntax, this becomes
[(a, b), a, b], and this is what we enter (for technical reasons, the overline a is
entered as a minus symbol −a):

GraPE starts up the backend theorem prover, displays the derivation, which
currently only consists of a single structure, and a palette for (de-)activating
inference rules, the so-called rule chooser.

7

Our goal is to move the atom a and its negation -a closer together so that
we can apply the interaction rule. To achieve this, we apply the switch rule to
[-a,(a,-b)]. So we mark it and ask for possible inference steps.

The underlying prover computes the possible steps and the results of ap-
plying them, and GraPE displays them in a list for the user to select one. In
general, the number of possible steps to choose from can be quite overwhelm-
ing, so the user can decide to ignore some rules by deactivating them in the
rule choosing palette – for our derivation, we have deactivated all rules except
interaction and switch.

After we have selected the proof step we wish to take (namely, rewriting
[−a, (a,−b)] to (−b, [a,−a])), the derivation is augmented by this new step and
then again displayed.

8

Proceeding in this manner, we can finally obtain a complete proof similar to
this one:

This derivation could now be exported as TEX [18] code (using the LATEX [19]
macro package and the bussproofs proof tree style [6]). The details of how to
translate an inference system’s formulae into the TEX typesetting language are
also part of the system description file.

This small example provides some evidence that a graphical user interface is
indeed very useful when constructing proofs with deep inference: mouse-based
selection of the redex to consider seems a lot more natural and convenient to
us than specifying it as a character range or a position in an abstract syntax
tree, as would perhaps be necessary in a command-line based proof editor. This
contrasts with the sequent calculus, where inference rules can only be applied
to toplevel connectives, leading to fewer application positions, and thus perhaps
less to be gained from using a graphical interface.

Also note that with our implementation of system KSg we could have avoided
the (admittedly marginal) burden of manually constructing the proof by relying
on automatic proof search instead, which is represented by the prove rule. In this
special case, proof search indeed finds exactly the same proof we just constructed
manually.

Proof search (though not traditionally considered a form of proof manipu-
lation) is an example of a higher-level proof transformation rule that can be
implemented by the backend and presented to the user in the same manner as
a simple inference rule.

9

As another example, let us prove the theorem ([a, a], [a, a]) in system SKSg.
Using rules c↑ and i↓, a proof is quickly accomplished:

Now we can use the proof transformation rule c-up-elim to eliminate the
instance of c↑ and replace it by an equivalent sub-derivation consisting of other
rules. This yields the following derivation:

While this derivation is certainly not the shortest or most elegant one, it
serves to illustrate the ease with which GraPE allows to incorporate proof trans-
formation rules.

In the rest of the paper we will give a more thorough description of the
architecture and implementation of GraPE with the above sample proofs serving
as our running examples.

3 The Big Picture

Let us start our exposition with a bird’s eye overview of GraPE’s architecture,
as it is pictured in Figure 4. We already mentioned that GraPE consists of
a graphical frontend and a theorem prover backend. The frontend, which is
implemented in the Java programming language [10], is general and indepen-
dent of any concrete inference system. The backend, on the other hand, would
generally be tuned for a certain kind of (or even only one) inference system. In

10

Figure 4: A Schematic Overview of GraPE’s Architecture

the example scenario depicted here, the frontend is connected the GraPE2Maude
backend which interfaces to the Maude implementation of an inference system
(KSg in this case).

However, the frontend can be used with different systems implemented by
different backends. For this purpose, GraPE defines a generic inference system
description language and a standard protocol that frontend and backend use to
communicate.

The system description needs to specify:

• the system’s syntax, i.e. the available logical constants and operators; for
each operator, it specifies

– information about its abstract syntax, i.e. its arity, and whether it
is commutative or associative (if applicable)

– information about its concrete syntax, i.e. its precedence and its
operator symbols

– information about its presentation on-screen and for TEX output

• the available rules; since they are implemented by the backend, the fron-
tend only needs to know their names

• the backend implementing this system

A more detailed description of the format of system description files, as well
as a concrete example, is the subject of section 5.

The frontend itself is designed according to the MVC (Model - View - Con-
troller) architectural pattern [21]. This pattern separates an application into
three main components, unsurprisingly called model, view, and controller, which
can be characterized as follows:

Model The model handles the underlying data the program works with, ar-
ranging them in data structures that correspond to the real-world or con-
ceptual entities being modeled.

11

c↑ −elim

uullllllllllllllll

**VVVVVVVVVVVVVVVVVVVVVVV

c↑

xxrrrrrrrrrrr

!!C
CC

CC
CC

C i↑

yysssssssssss

 @
@@

@@
@@

@

([a, a], [a, a]) i↓

}}||
||

||
||

##G
GGGGGGGGG ([a, a], [a, a]) c↓

��~~
~~

~~
~~

~

��@
@@

@@
@@

@@

[a, a] tt

Figure 5: Outline of the internal representation of a derivation tree

View The view renders the model into a graphical or textual representation
suitable for interaction with the user.

Controller The controller handles user interaction and interprets it as requests
to change the model. It forwards these requests to the model, and then
updates (if necessary) the view to correspond to the changed model.

In GraPE, the entity being modeled is a derivation tree in some inference
system. The inference system is modeled as a collection of objects representing
operators and inference rules, the derivation tree is modeled as a thee-tiered
abstract syntax tree.

The lower tier describes individual formulae with nodes corresponding to
logical operators and subtrees to operands. The middle tier describes the appli-
cation of inference rules with nodes corresponding to inference rules and subtrees
to premises and conclusions. The higher tier, finally, describes the application
of transformation rules with nodes corresponding to transformation rules and
subtrees to their input and output derivations.

For example, the internal tree corresponding to the second example above,
in which we first constructed a proof tree for ([a, a], [a, a]) using the c↑ rule and
then later eliminated it using the c-up-elim transformation rule, can be roughly
pictured as in Figure 5: the left subtree of the root represents the original proof
(to save some space, the full syntax trees for the individual structures have been
omitted), whereas the right subtree corresponds to the c↑-free derivation, which
due to its size is only partly depicted.

This internal derivation tree is presented to the user in the form of a GUI
element, or as a piece of TEX code. In terms of the MVC pattern, these two
representations are two different views of the same model. A further (though
less typical) example of a view is the syntax in which the user enters formulae
to be proved. The declarations necessary to specify how these three views can
be constructed take, as we will see later, up the bulk of most inference system
descriptions.

The final piece of our big picture of the GraPE frontend is the controller.
This is the component which is responsible for handling user interaction and
communicating with the backend. In GraPE, the most important kind of user
interaction is when the user selects a redex and asks for rewrites. The interplay

12

between the user and the system, as well as between different components of
the system can be summarized as follows:

1. The user selects a redex using the mouse; while she is dragging the mouse,
the controller makes sure that the selection always corresponds to a syntac-
tically well-formed subformula. The information about what constitutes
a well-formed subformula is obtained from the model.

2. By mouse click, the user asks for a list of possible rewrites. The controller
hands the currently selected redex and the list of currently activated rules
to the backend, which computes all possible rewrites.

3. The list of possible rewrites (itself a part of the model) is displayed in a
dialog box (the corresponding view) for the user to choose from.

4. Once the user has made her choice, the derivation tree’s model is changed
to reflect it, then the view is updated to display the new tree.

This general description will be fleshed out with more details below using
our running examples from the introduction.

4 Implementing System KSg

Before we show how to describe system KSg for GraPE, we first present its im-
plementation as a Maude module. This section closely follows the corresponding
sections from [16] and [7].

4.1 A Short Introduction to Maude

Maude is a language and interpreter for declarative programming in rewriting
logic and membership equational logic. The basic unit of specification and pro-
gramming is the module. In Maude, there are three kinds of modules: functional
modules, system modules, and object oriented modules. Our implementation
will only use functional and system modules. A module can import another
module by means of the protecting declaration.

From a programming point of view, a functional module is an equational
style functional program with user-definable syntax, in which a number of sorts,
their elements, and functions on those sorts are defined. Functions can be given
definitions through equations viewed as simplification rules to be applied in
the left to right direction. These rules are assumed to form a terminating and
confluent term rewriting system.

A system module, on the other hand, can be seen as a declarative style
concurrent program, again with user-definable syntax. System modules can
include rewrite rules, which are, however, not assumed to be terminating or
confluent.

Maude’s interactive interpreter shell provides the reduce command, which
uses a functional module’s equational rules to reduce a given term to normal

13

form. This is, of course, not possible for a system module. Here one can use
the search command, which for two given terms searches for a sequence of
rewritings transforming one into the other by breadth-first search.

An important aspect of Maude is its support for reflection: modules, sorts,
terms, and rewrite rules can be represented in the Maude language itself as
values of sort Module, Sort, Term, and Rule, respectively. These values can
be used, inspected, and decomposed using builtin accessor functions; for our
purposes, the two most interesting ones are metaReduce and metaSearch, which
mimic the functionality of the interpreter commands reduce and search, but
can be used inside other function definitions.

4.2 System KSg in Maude

We first give an implementation of system KSg in Maude, which exploits the
above-mentioned parallel between deep inference and term rewriting: KSg struc-
tures are represented as Maude terms of sort Structure with the logical oper-
ators defined as Maude operators, the equational theory is implemented using
equational logic, and the inference rules correspond to rewrite rules.

4.2.1 Representing Structures

For example, the negation, conjunction, and disjunction operators and the two
constants for KSg are declared as follows:

op tt : -> Structure .
op ff : -> Structure .
op -_ : Structure -> Structure .
op {_,_} : Structure Structure -> Structure [assoc comm id: tt] .
op [_,_] : Structure Structure -> Structure [assoc comm id: ff] .

Note that operand positions are indicated by underscores () in the declara-
tion. Operator attributes like commutativity and associativity or the existence
of units are provided as so-called operator attributes inside square brackets. This
not only frees the user of having to explicitly give equations for these proper-
ties, but also ensures that Maude will use its built-in optimized algorithms for
associative and commutative matching when rewriting such structures. Also
note that the conjunction operator has to be written with curly brackets, since
round parentheses have a special syntactic status in Maude.

Given the above declarations, the formula

[[a, b], a, b]

can be represented as the Maude term

[-[- a, b], [- a, b]]

14

4.2.2 Representing the Equational Theory

Now assume the following two equations, one De Morgan law and the involution
law, are given:

eq - [S:Structure , T:Structure] =
{ - S:Structure , - T:Structure } .

eq - - S:Structure = S:Structure .

Then the following short command line transcript shows how to reduce a
term to normal form

Maude> reduce [-[- a, b], [- a, b]] .
reduce in SKSg : [- [b,- a],[b,- a]] .
rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)
Result Structure: [b,[- a,{a,- b}]]

The result corresponds, of course, to the negation normal form [(a, b), a, b]
of the input formula.

4.2.3 Representing the Inference Rules

If we further define the switch rule as a rewrite rule

rl [switch] : [T:Structure,{R:Structure, S:Structure}] =>
{S:Structure,[R:Structure, T:Structure]} .

we can search for possible rewrites of our above term:

Maude> search [b,[- a,{- b,a}]] =>1 S:Structure
(...)
Solution 11 (state 11)
states: 12 rewrites: 22 in 0ms cpu (0ms real) (~ rewrites/second)
S:Structure --> [b,{- b,[a,- a]}]
(...)

This result shows that the term [b,[-a,{-b,a}]] (corresponding to struc-
ture [a, a, (a, b)]) can be rewritten to [b,{-b,[a,-a]}] (corresponding to
[b, (b, [a, a])]) in one step. Incidentally, this was the first rewrite step chosen
in our introductory example derivation.

Further Maude commands exist to display more details about a particular
rewrite; the curious reader is referred to [16].

The complete definition of KSg’s syntax, the equational theory, and the in-
ference rules are given in Figure 6, with one functional module (KSg-Signature)
for the sort and operator definitions, another functional module (KSg-NNF) for
the equational theory, and a system module (KSg-Inf) for the inference rules.

This implementation closely follows the formal definition given earlier, if we
keep in mind that the Maude rewrite rules correspond to a bottom up reading
of the inference rules.

15

fmod KSg-Signature is

sorts Atom Unit Structure .
subsort Atom < Structure .
subsort Unit < Structure .

op tt : -> Unit .
op ff : -> Unit .
op -_ : Structure -> Structure .
op [_,_] : Structure Structure -> Structure [assoc comm id: ff] .
op {_,_} : Structure Structure -> Structure [assoc comm id: tt] .

ops a b c d e f g h i j : -> Atom .

endfm

fmod KSg-NNF is

protecting KSg-Signature .

vars R T : Structure .

eq - tt = ff .
eq - ff = tt .
eq - [R , T] = { - R , - T } .
eq - { R , T } = [- R , - T] .
eq - - R = R .

endfm

mod KSg-Inf is

protecting KSg-Signature .

var A : Atom .
var R T U : Structure .

rl [i-down] : [A , - A] => tt .
rl [s] : [{ R , T } , U] => { [R , U] , T } .
rl [w-down] : R => ff .
rl [c-down] : R => [R , R] .
rl [tt-dis] : tt => [tt , tt] .
rl [ff-con] : ff => { ff , ff } .

endm

Figure 6: Maude Implementation of System KSg

16

There are, however, two notable differences: the i ↓ rule is only applied to
atoms, and two equations of the equational theory are instead implemented as
rewrite rules, namely tt-dis and ff-con.

Regarding the first difference, applying i↓ only to atoms (known as “atomic
interaction”) yields a more straightforward implementation. To see why, con-
sider the following (incorrect) definition of full i↓:

rl [i-down] : [R:Structure, - R:Structure] => tt .

We would like this rule to apply, say, for R = {a,b}. But since we only
deal with structures in negation normal form, -R would be [-a,-b], and the
term [R,-R], now of the form [{a,b},[-a,-b]], would not match the left hand
side of the rule. For atoms, such a situation can never occur, and the simple
implementation works.

Correcting this problem is not impossible, but makes the code more com-
plicated. And as mentioned in the introduction, using only atomic interaction
does not restrict the range of possible derivations.

For the second difference, recall that Maude treats the equations in func-
tional modules as rewrite rules from the left to the right. If we were to give the
equation

eq { ff , ff } = ff

Maude would, for example, reduce the term [a,{ff,ff}] to [a,ff] and further
to a.

However, it would never use the equation from the right to the left, convert-
ing ff to {ff , ff}, since this would clearly lead to a non-terminating rewrite
system. Thus we have to provide this case as an explicit rewrite rule.

In the light of these two differences, we should actually call this system KSg′

to indicate it is not the original system KSg anymore. Still, we can construct all
derivations in KSg′ that we could construct in KSg, so we will not distinguish
between the two.

4.3 System SKSg in Maude

If we want to extend the above modules to an implementation of system SKSg,
a complication arises: while we can reuse the modules for the signature and
the equational theory, some of the up rules cannot be implemented as Maude
rewrite rules.

Take, for example, the rule w↑. We might want to implement it as

rl [w-up] : tt => R:Structure .

This definition, however, is rejected by Maude: variables can never be in-
troduced on the right hand side of a rewrite rule. Intuitively, this makes sense,
as the interpreter would not know what to substitute for R when applying this
rule. A possible solution would be to don’t-know non-deterministically select a

17

structure and later backtrack if it turns out not to be the right choice; this is,
however, not currently implemented in Maude.

The same problem arises with the definition of i↑. Both of these rules have
been omitted from our Maude implementation, which is a simple extension of
the KSg implementation obtained by adding a rewrite rule c-up for inference
rule c↑. This yields a modified version of SKSg, which we call system SKSg′.

The difference between the two systems is not as big as one might think: as
shown in [5], all the “up” rules are admissible, i.e. any proof that uses them can
be transformed into one that does not. For w↑ and c↑, an even stronger result is
shown: any derivation (not just any proof) that uses them can be transformed
into one that does not.

Hence, although the difference between SKSg′ and SKSg is bigger than be-
tween KSg′ and KSg, we still will not normally distinguish between them for
the purposes of this presentation.

4.4 Representing Transformation Rules

The techniques used so far are sufficient for implementing inference rules. In or-
der to implement transformation rules that affect entire derivations, however, we
need additional support for reifying derivations so that these rules can operate
on them. We show how this can be done by extending the above approach.

We additionally introduce a Maude operator >[]> which allows us to
express derivations; for example, the second introductory example derivation

tti↓
[a, a]

c↑
([a, a], [a, a])

would be represented as

{[a, - a], [a, - a]}
>[’c-up]> [a, - a]
>[’i-down]> premise(tt)

where inference rules are referenced by their names written in Maude’s quoted
identifier syntax.

This representation could now be used for any inference in system SKSg;
however, we would like it to be uniform over different inference systems with
different logical operators. Hence we make use of the meta-level facilities of
Maude and declare the derivation operator to be an operator on Terms (inde-
pendent of the concrete sort used to represent formulae in a specific module);
this suggests the following declarations for the derivation operator:

sort Derivation .

op premise : Term -> Derivation .
op _>[_]>_ : Term Qid Derivation -> Derivation .

18

Now our above example can be rewritten to use Terms; the concrete syntax
of Terms is very cumbersome to read, but fortunately there is a Maude builtin
function upTerm, which converts a given object-level term into its meta-level
representation. The example thus becomes:

upTerm({[a,- a], [a,- a]})
>[’c-up]> upTerm([a,- a])
>[’i-down]> premise(upTerm(tt))

Such a representation allows us to formulate the prove rule for system SKSg
as a rewrite rule similar in spirit to the inference rules:

rl [prove] : premise(T) =>
derivationOfSearchPath(’SKSg-Inf, T, upTerm(tt)) .

To see how this rule works, consider the following prefix of the above example
derivation:

upTerm({[a,- a], [a,- a]})
>[’c-up]> premise(upTerm([a,- a]))

The prove rule can be applied to this derivation, matching the premise. The
utility function derivationOfSearchPath now constructs a sequence of rewrites
from [a,- a] to tt using the meta-level function metaSearchPath mentioned
before, and returns it as a new derivation:

upTerm([a,- a])
>[’i-down]> premise(upTerm(tt))

This new derivation is then spliced into the original derivation, replacing its
premise and yielding the complete derivation we have seen before.

5 Generic Description of Inference Systems

Having described the implementation of system KSg in Maude, we are now ready
to give its system description. The description of any inference system needs to
bridge the gap between the internal abstract representation of a derivation (the
model) and the external representation for the user (the view). In particular, it
defines

• the abstract syntax of formulae as represented internally,

• the concrete syntax used for manual formula input by the user,

• the available rules of inference and transformation,

• the graphical display format of formulae and derivations,

• the backend to use,

19

• translation rules for exporting derivations as TEX documents.

All of these definitions are bundled together into an XML [9] file which is
accessible for both the frontend and the backend.

5.1 Describing Syntax and Display Format

5.1.1 General Operator Attributes

Formula syntax is described by a list of operator declarations. GraPE supports
unary and binary operators. Unary operators can be prefix (like the negation
operator “¬”), postfix, or outfix (like the parentheses “()”). Binary operators
can be infix (like the classical conjunction operator “∧”) or outfix (like system
KSg’s conjunction operator “(,)”). Constants are treated as operators without
operands.

Each operator has a unique numerical precedence, which is a natural number,
where higher numbers indicate less tight binding, and an internal ID. If not
given explicitly, operators are automatically assigned numerically decreasing
precedences in the order of listing, that is operators declared earlier bind less
tight; if no explicit internal ID is given, one is synthesized.

For each of an operator’s operand positions, one can specify whether this
position contains a single operand (the default) or a list or multiset of operands,
and what maximum precedence to expect in this position.

For instance, assume that we declare the classical negation operator ¬ to
have a precedence of 1; if we declare its operand position to also have a maxi-
mal precedence of 1, the negation operator can have another negated expression
as its argument (as in ¬¬a). If, however, the operand position has a maxi-
mal precedence value of 0, the operand cannot have ¬ as its topmost operator
anymore.

As another example, consider the turnstile operator ` from one-sided sequent
calculus. It is a unary operator, but its (single) operand is in fact a multiset
of operands. This fact can be directly expressed by declaring the operand posi-
tion to be a comma-separated multiset, ensuring that ` a,¬a is indeed a valid
expression.

5.1.2 Graphical Representation of Formulae

It was mentioned above, that the internal abstract syntax tree representation
of the current derivation (and with it the representation of every individual
formula) lies at the heart of the model. This model can produce a view of itself,
that is a textual or graphical representation of the data it contains. In fact,
there is not a single view, but there are three different views:

1. the input view: this is the representation users employ when manually
entering formulae via the keyboard. In this representation, graphically
more complex operators can be rendered as “ASCII art”; for example, the
classical conjunction operator ∧ might be entered as /\.

20

2. the output view: this is the representation GraPE employs when dis-
playing formulae on the screen, for example inside the derivation tree. It
should look as natural as possible to the user, using the standard operator
symbols whenever feasible.

3. the TEX view: this representation can be used to export formulae for use
inside a LATEX document.

The system description must provide enough information for the model to
be able to generate any of these three views. Therefore, it must, for every
operator symbol, specify three representations: two Unicode strings for the
input and output views, and one fragment of TEX code for the third view.
Often, these representations will, however, be the same; hence GraPE provides
suitable defaults as specified below.

5.1.3 Individual Operator Attributes

Apart from the general attributes described above, each kind of operator has
special attributes relating to its syntactic representation and display. We give
here a quite detailed list; the reader might consider skipping it on first reading
and refer back to it when needed.

• for unary prefix operators:

symbol the operator symbol’s output view

input the operator symbol’s input view; by default, this is the same as
symbol

tex the code pattern to be used when creating the TEX view; instances
of the TEX argument placeholder #1 will be replaced by the code
generated for the (one and only) argument

To avoid ambiguities, the operand position’s maximal precedence must
never exceed the operator’s own precedence.

For example, the negation operator for system KSg is declared by

<unary-prefix symbol="-" tex="\overline{#1}"/>

All other attributes are given their default values; in fact, the complete
definition would be

<unary-prefix id="-_" symbol="-" input="-"
tex="\overline{#1}" prec="14"
op="singleton" opprec="14"/>

declaring the negation operator to be a unary prefix operator with inter-
nal id - , output symbol −, input symbol -, TEX code \overline{#1}

21

and precedence 14. Its operand is declared to be a singleton of maximal
precedence 14.

Note that the precedence value of fourteen is computed because there are
two other operators and twelve constants (two logical constants and ten
predefined propositional letters), among which the unary negation has the
least binding power. The operand position’s precedence of 14 means that
applications of this operator can be stacked (if it were, for example, 13,
then only expressions with tighter binding operators could occur as its
argument).

As another example, take the turnstile operator from one-sided sequent
calculus (bundled with the GraPE distribution as system GS1p). Here,
the declaration is

<unary-prefix symbol="⊢" input="|-"
tex="\vdash #1" operand="multiset,"/>

Thus, the operator symbol is to be input as |-; the graphical representa-
tion is ⊢, which is a character entity predefined by GraPE that re-
solves to the Unicode [1] character code for the turnstile. The operand po-
sition, finally, is specified as being a "multiset,", i.e. a comma-separated
multiset.

• for unary postfix operators: the possible attributes are the same as for
prefix operators. To avoid ambiguities, the operand position of a unary
postfix operator can only be a singleton of precedence not greater than
the operator itself.

• for unary outfix operators: Similar to the other unary operators; note that
we now do not have a single operator symbol but two (the start delimiter
and the end delimiter). Each operator symbol has of course three different
views, yielding a total of six view-related attributes (startsym, endsym,
instart, inend, texstart, and texend).

For the normal grouping parentheses, for example, we declare

<unary-outfix startsym="(" endsym=")" grouping="yes"/>

Instead of the pair of startsym/endsym declarations, we could also have
given a single symbol attribute, that has to be exactly two characters long,
the first being the start and the second the end delimiter.

The grouping attribute is special for unary outfix operators. Sometimes,
formulae constructed by the prover may be syntactically ambiguous and
their correct interpretation has to be forced by bracketing. In general,
we cannot assume that the bracketing operator will always be the nor-
mal parenthesis (in KSg, for example, this has quite a different mean-
ing). Hence the user has to explicitly specify a grouping operator if one is
needed.

22

As with other outfix operators, the operand position’s precedence defaults
to the highest precedence occurring in the system description, i.e. any
kind of expression can occur as an operand.

• for binary infix operators:

symbol the operator symbol’s output view (as for unary prefix operators)

input the operator symbol’s input view; by default, this is the same as
symbol

tex specifies the TEX code to use for the operator; this is not a code
pattern as above, but simply a binary operator to be put in between
operands

assoc whether the operator is associative; the default is yes

comm whether the operator is commutative; again, the default is yes

leftprec, leftop specifies the type and precedence of the left operand
position

rightprec, rightop same for the right operand position

It should be noted that the comm attribute only describes whether the
frontend should treat this operator as commutative. In many sequent cal-
culus systems, for instance, the commutativity of the classical conjunction
operator ∧ is not implicit as in system KSg, but built into the structural
rules of the system. For such systems, the frontend should not know
about the operator’s commutativity, and it would hence be declared with
comm="no".

For example in system GS1p, the conjunction operator is defined as

<binary-infix symbol="∧" input="/\" tex="\wedge"
comm="no"/>

Note again the use of a predefined entity, ∧, for the operator sym-
bol.

For associative operators, the specifications for the two operand positions
have to agree, since for example in the formula a∧ b∧ c, the subformula b
is both the right operand of the first, and the left operand of the second
conjunction.

• for binary outfix operators: all of the attributes for binary infix operators
can be used, with the additional feature that the operator symbol consists
of a start delimiter, a separator, and an end delimiter; as with unary outfix
operators, these can be given either as three different attributes or as one
three-character attribute

• for constants: constants have attributes symbol, input, and tex with the
same meaning as for the other operators. For convenience, there is also an

23

<syntax>
<unary-prefix symbol="-" tex="\overline{#1}"/>
<binary-outfix symbol="[,]"/>
<binary-outfix id="con" symbol="(,)"/>
<constant symbol="tt"/>
<constant symbol="ff"/>
<constants symbols="a b c d e f g h i j"/>

</syntax>

Figure 7: XML definition of KSg’s syntax

operator type constants, which allows to define several constants with
similar attributes at once; this can be used, for example, to define a list
of propositional variables (which are treated as constants by the GraPE
parser).

The complete syntax specification for system KSg is given in Figure 7. Ob-
serve that the conjunction operator is given a special identifier, because it needs
to be referred to from the backend-specific part of the description file, which
will be given later.

For the reader who feels uncomfortable with this rather casual explanation
of the operator declarations, we give a procedure for transforming a sequence
of operator declarations into a context-free grammar in appendix A.

5.2 Describing Rules

The next section of the description file is devoted to describing the available
rules. We distinguish between inference rules, which act upon single formulae,
and transformation rules, which act upon whole derivations.

Since the matching and application of rules is entirely the responsibility of
the underlying prover, the frontend only needs to know each rule’s name (which
will also be the one displayed by the GUI) and how to represent the name in
TEX. Furthermore, it can be specified whether a rule should be enabled when
the program starts up. By default, inference rules start out enabled, whereas
transformation rules are disabled.

In contrast to formulae, whose textual representation is largely user-definable,
the graphical representation of inference rules is always the same, following the
well-established proof tree paradigm. For transformation rules, on the other
hand, only the result of the transformation is represented on-screen, hiding the
input proof tree.

The rule description section for system KSg is given in Figure 8.

5.3 Describing the Backend

Finally, we need to tell GraPE which backend to use and how to find it, and
provide some parameters the backend needs. This part is very much depen-

24

<rules>
<inference-rule name="i-down" tex="$\mathsf{i}\!\downarrow$"/>
<inference-rule name="s" tex="s"/>
<inference-rule name="w-down" tex="$\mathsf{w}\!\downarrow$"/>
<inference-rule name="c-down" tex="$\mathsf{c}\!\downarrow$"/>
<inference-rule name="ff-con" tex="$\mathsf{ff-con}$"/>
<inference-rule name="tt-dis" tex="$\mathsf{tt-dis}$"/>
<transformation-rule name="prove"/>

</rules>

Figure 8: XML definition of KSg’s rules

<backend class="grape.backend.grape2maude.GraPE2Maude">
<load name="ksg.maude"/>
<inferencer name="KSg-Inf"/>
<normalizer name="KSg-NNF"/>
<maudename id="con" name="{_,_}"/>
<result-sort name="Structure"/>

</backend>

Figure 9: XML definition of KSg’s backend

dent on the particular backend used, so we just give and explain the necessary
declarations for KSg with the Grape2Maude backend (see Figure 9).

The class attribute of the backend element is required for all backend
declarations; it tells the frontend which class implements the backend so that
it can dynamically load this class at runtime. In our case, the backend class is
part of the GraPE distribution, but that does not have to be the case. The user
can write their own backend in Java, compile it to a .class file and insert its
class name here, provided it conforms to the Prover interface specified below.

The next three lines tell Maude which files to load and the names of the
inferencer and normalizer modules; the first one is supposed to contain the
inference rules, whereas the second one is used to normalize formulae (compare
with the module definitions given above in Figure 6).

Because the conjunction’s syntax is different in Maude than it is in the
frontend, we specify a maudename override, which uses the identifier introduced
earlier to refer to the conjunction operator.

Finally, the result-sort declaration gives the name of the Maude sort that
is used to represent formulae.

6 Putting It All Together

Armed with our knowledge about the implementation of system KSg, let us now
revisit our initial example to complete our exposition of GraPE’s internals.

25

Figure 10: Class diagram of the relation between nodes, inference systems, and
syntax elements

[,]

vvmmmmmmmmmmmmmmm

�� &&MMMMMMMMMMMMM

(,)

}}||
||

||
||

!!D
DD

DD
DD

D
−

��

b

a −

��

a

b

Figure 11: Abstract syntax tree for [(a, b), a, b]

When the user selects the description file sksg.xml, GraPE reads it, creates
a representing object for every operator or rule, and gathers them together in
an object representing the inference system; this relationship is represented in
the left part of the UML [20] class diagram in Figure 10. The operator and rule
objects (which we will collectively call syntax elements in the following) serve
two important purposes:

They implement the parser which parses formulae input by the user, and
they can also build the graphical representation of a derivation. For example, if
the user enters the formula [(a,-b),-a,b], it is parsed by the operator objects
into the syntax tree in Figure 11.

This syntax tree is implemented as a tree of Node objects, where each node
contains a reference to its parent and a list of children, along with a reference
to the operator whose application it represents and the surrounding inference

26

〈〈Interface〉〉
Prover

setParam (in name : String, in value : String) : void

start () : void

normalize (in derivation : Node) : Node

findRewrites (in redex : Node, in rules : Collection〈Rule〉)
: Collection〈Node〉

abort () : void

Figure 12: The Prover interface

system (again, see Figure 10).
Now the backend is loaded dynamically according to the specifications of the

description file. Since its actual type will not be known until run time, GraPE
requires any backend to implement the interface Prover given in Figure 12.
This interface guarantees the existence of five methods which together form the
communication protocol between frontend and backend:

Method setParam is used to pass backend-specific settings given in the de-
scription file on to the prover. For example, the names of the module files to
load as specified by the load-file directives in the description file are passed
to the backend via setParam invocations. Once this setup is completed, start
is called to initialize the prover.

Before displaying the freshly started derivation for the first time, GraPE
first normalizes it by passing it through the backend’s normalize method. The
GraPE2Maude backend implements this normalization as reduction using the
equations from the specified normalizer module, i.e. KSg-NNF in our case. The
formula [(a, b), a, b] used in the introductory example is already in normal form,
hence the normalization step does not change anything.

The normalized syntax tree (the model in terms of the MVC architecture)
is then converted into graphical representation (the view), which just consists
of the formula

[(a,−b),−a, b]

The conversion from abstract syntax tree to graphical representation is the
second important purpose of the operator objects: since they store all the infor-
mation about the operator type and symbols, they can construct the graphical
view of a given node, provided the views of the node’s children have already
been constructed.

In the example above, first the views of the constant nodes a and b are con-
structed, which are given in the system description (a and b, respectively). Next,
the unary negation nodes can have their views constructed: both of them have

27

the same operator object, namely the object representing unary negation. This
object, when given the view of the operand (i.e., the string a or b), constructs
a new view by prepending the operator symbol − to it, yielding −a and −b.
Now the conjunction operator can process its two operands’ views to produce
(a,−b), which is then fed to the disjunction operator to yield the view of the
whole formula, [(a,−b),−a, b].

In addition to the character string to be displayed on-screen, the view also
contains a list of all markable ranges inside the formula, i.e. of all character
ranges that correspond to possible redices. A possible redex is either a subtree
of the syntax tree or a contiguous run of subtrees of an associative operator’s
node. In the example above, (a,−b) is a markable range and a possible redex
(since it is a subtree), and so is (a,−b),−a, which corresponds to the possible
redex [(a,−b),−a], a contiguous run of subtrees. On the other hand, [(is not a
markable range. After displaying a formula’s view on the screen, the controller
makes sure that the user can only select markable ranges with the mouse.

A final refinement are the so-called active characters: when displaying a
formula with a binary commutative operator, this operator’s symbol is made
mouse-sensitive. A mouse click by the user then results in swapping the two
operands of this operator, i.e. exchanging the position of the two corresponding
subtrees in the model and then updating the view. In the example, all the com-
mata are made mouse-sensitive, since both the conjunction and the disjunction
operator were declared as being commutative.

Now let us retrace the steps of a typical user interaction as given in our “Big
Picture” overview:

1. First, the user selects a redex. As mentioned, the system only allows
selections which actually correspond to sensible redices, that is either a
complete subtree or two or more contiguous subtrees of an associative
operator node. Note that GraPE does not check whether there actually is
a rewrite for a selected redex; this can be computationally expensive (as
it involves communication with the backend), and is only done when the
user actually requests a rewrite.

2. Assume the user selects the range corresponding to the possible redex

[(a,−b),−a]

and then requests a rewrite. The frontend produces a Node object for the
redex, assembles a list of all currently activated inference and transforma-
tion rules, and hands both to the backend’s findRewrites method.

The backend then checks whether there are any rewrites for this redex
using the given collection of rules, and returns all of them as a collection
of Rewrite objects.

The internal representation of a rewrite, given as a UML class diagram in
Figure 13, is more or less straightforward: the representing object needs to
encapsulate information about the redex, the rule used, and the contracta.

28

RewriteStep

redex : Node

rule : Rule

contracta : List〈Node〉

Figure 13: Class RewriteStep

(,)

||zz
zz

zz
zz

!!C
CC

CC
CC

C

[,]

~~}}
}}

}}
}}

""F
FFFFFFF

−

��
a −

��

b

a

Figure 14: Abstract syntax tree for ([a,−a],−b)

Note the plural here: a single rewrite can yield a list of results. This
is simply a convenience for uniformly implementing branching rules. In
system KSg, every rewrite will always have a single contractum; in system
GS1p, however, some rules result in rewrites with two contracta.

3. The list of possible rewrites is displayed in a dialog box for the user to
choose from. Again, we see here the influence of the ubiquitous MVC
pattern: the Rewrite objects are part of the model, their graphical repre-
sentation inside the dialog box is a view, and the code that interprets the
user’s selection takes over the role of the controller.

In our example, the user requested an application of the switch rule, with
the redex being rewritten to ([a,−a],−b); the syntax tree of this formula
is given in Figure 14.

4. This tree is then plugged into the position formerly occupied by the redex,
yielding the tree in Figure 15.

This whole syntax tree is the premise of the rule application, whereas the
conclusion is the syntax tree we saw before in Figure 11. The two of them
are joined together by a rule node labeled with s to indicate an application
of the switch rule, yielding the new derivation tree in Figure 16, which is
our new model.

Applying further inference rules results in the addition of further inference
nodes (i.e., nodes labeled with inference rules). The leftmost subtree of each

29

[,]

vvmmmmmmmmmmmmmmm

��@
@@

@@
@@

@

(,)

||zz
zz

zz
zz

!!C
CC

CC
CC

C b

[,]

~~}}
}}

}}
}}

""F
FFFFFFF

−

��
a −

��

b

a

Figure 15: Abstract syntax tree for [([a,−a],−b), b]

s

vvmmmmmmmmmmmmmmm

))SSSSSSSSSSSSSSSSSS

[,]

vvmmmmmmmmmmmmmmm

�� ��@
@@

@@
@@

@
[,]

||zz
zz

zz
zz

��@
@@

@@
@@

@

(,)

~~}}
}}

}}
}}

!!C
CC

CC
CC

C
−

��

b (,)

||zz
zz

zz
zz

""E
EEEEEEE b

a −

��

a [,]

~~}}
}}

}}
}}

""F
FFFFFFF

−

��
b a −

��

b

a

Figure 16: Example for a derivation tree containing an inference node

30

inference node is a formula, namely the rule’s conclusion, while the further
subtrees might also be formulae or might themselves be inference nodes. Thus,
the application of inference rules results in the tree growing at the lower right.

Applying a transformation rule, on the other hand, creates a new root node,
whose first child (the input of the transformation) is the old derivation, and
whose second child is the new derivation, i.e. the output of the transforma-
tion. Is this way, GraPE keeps a complete history of all applied inference and
transformation rules, and the application of any rule can simply be undone by
replacing the corresponding rule node with its leftmost child.

7 Discussion

We have described the design and implementation of GraPE, a graphical proof
editor with support for generic description of inference systems, multiple prover
backends, and an extended notion of proof manipulation rule, including both
simple inference steps and more complicated proof search or proof transforma-
tion rules. We have shown how the distinction between a frontend handling
graphical derivation display and user input and a backend doing tho actual
work of theorem proving makes the editor very flexible and usable with a wide
range of different inference systems, and how the use of Maude as a backend
makes the implementation of new inference systems quite easy.

Although we think that GraPE is already very general, there are still some
features missing, for example:

• First-order systems: The inference systems mentioned above are all for
propositional logic; in fact, the syntax description rules of GraPE are not
powerful enough to accommodate the more complicated structure of first-
order formulae. We are planning to extend GraPE with the ability to
handle first-order syntax in one of the next versions.

• Top-down derivation construction: This feature is sometimes very help-
ful in finding derivations, and it would nicely complement the existing
bottom-up approach. Supporting it would probably entail some exten-
sions to the current handling of the internal derivation tree.

• Automatic generation of description files and Maude modules: Since a lot
of information is duplicated in the Maude implementation and the system
description, it would be nice to have a utility that generates at least a
skeleton of one from the other. Command line utilities to do this are
currently under development.

• Other display styles (besides proof trees and chains): This is a more long-
term goal; we would like to be able to use, for example, natural deduction
or proof nets.

• For the GraPE2Maude backend, we would like to implement more sophis-
ticated proof manipulations.

31

We think that these features can be integrated into GraPE as an extension
of currently existing features without having to change any of the basic design
decisions.

In the end, however, only the feedback of our users will show whether we
have succeeded in developing a useful system.

References

[1] Joan Aliprand, Julie Allen, and Joe Becker, editors. The Unicode Standard,
Version 4.0. Addison Wesley Publishing Company, 2003.

[2] David Aspinall et al. Proof General Version 3.5. Website at
http://proofgeneral.inf.ed.ac.uk/.

[3] Janet Bertot and Yves Bertot. CtCoq: A system presentation. In Auto-
mated Deduction (CADE-13), volume 1104 of Lecture Notes in Artificial
Intelligence, pages 231–234. Springer-Verlag, July 1999.

[4] R. Bornat and B. A. Sufrin. Animating formal proof at the surface: the Jape
proof calculator. In The Computer Journal, 43(3), pages 177–192, 1999.

[5] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD The-
sis, Dresden University of Technology, 2003.

[6] Sam Buss. bussproofs.sty LATEX style. Website at
http://www.math.ucsd.edu/∼sbuss/ResearchWeb/bussproofs/.

[7] Manuel Clavel et al. Maude Manual (Version 2.2). Technical report, Com-
puter Science Laboratory, SRI International, 2006. Available online at
http://maude.cs.uiuc.edu/maude2-manual/.

[8] Manuel Clavel et al. The Maude 2.0 system. In Robert Nieuwenhuis, edi-
tor, Rewriting Techniques and Applications, Proceedings of the 14th Inter-
national Conference on Rewriting Techniques and Applications (RTA-99),
pages 240–243, Trento, Italy, July 1999. Springer-Verlag LNCS 1631.

[9] Extensible Markup Language (XML). Website at http://www.w3.org/XML.

[10] James Gosling et al. The JavaTM Language Specification, Second Edition.
Addison-Wesley Professional, 2000.

[11] Alessio Guglielmi. A system of interaction and structure. Technical Re-
port WV-02-10, Technical University of Dresden, 2002. To appear on ACM
Transactions on Computational Logic.

[12] Alessio Guglielmi. Deep Inference and the Calculus of Structures. Website
at http://alessio.guglielmi.name/res/cos/.

32

[13] T. Hallgren and A. Randa. An Extensible Proof Text Editor. In M. Parigot
and A. Voronkov, editors, Logic for Programming and Automated Reason-
ing, number 1955 in LNAI, pages 70–84. Springer-Verlag, 2000.

[14] Robert Hein and Charles Stewart. Purity through unravelling. In Paola
Bruscoli, François Lamarche, and Charles Stewart, editors, Structures and
Deduction, pages 126–143. Technical University of Dresden, 2005.

[15] Steffen Hölldobler and Ozan Kahramanoğulları. From the Calculus of Struc-
tures to Term Rewriting Systems. Technical Report WV-04-03, Dresden
University of Technology, 2004.

[16] Ozan Kahramanoğulları. Deep Inference: Implementation, Reducing
Nondeterminism, Language Design.
Draft of PhD Thesis, available on the web at
http://www.wv.inf.tu-dresden.de/∼ozan/Papers/ozansthesis.pdf,
2006.

[17] Ozan Kahramanoğulları. The Calculus of Structures in Maude. Website at
http://www.computational-logic.org/∼ozan/maude cos.html.

[18] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts,
1994.

[19] Leslie Lamport. LATEX: a Document Preparation System. Addison-Wesley,
Reading, Massachusetts, 1994.

[20] Meilir Page-Jones. Fundamentals of Object-Oriented Design in UML.
Addison-Wesley, 2000.

[21] Trygve Reenskaug. THING-MODEL-VIEW-EDITOR: an Example from a
planningsystem. Xerox PARC technical note, 1979.

[22] Charles Stewart and Phiniki Stouppa. A systematic proof theory for several
modal logics. Technical Report WV-03-08, Dresden University of Technol-
ogy, 2003.

[23] Lutz Strassburger. Linear Logic and Noncommutativity in the Calculus of
Structures. PhD Thesis, Dresden University of Technology, 2003.

[24] Donald Syme. A New Interface for HOL - Ideas, Issues, and Implementa-
tion. The Computer Laboratory, University of Cambridge, 1995.

[25] The GraPE Graphical Proof Editor. Website at
http://grape.sourceforge.net.

[26] Laurent Thery et al. Real Theorem Provers Deserve Real User-Interfaces.
In Proceedings of the Fifth ACM SIGSOFT Symposium on Software Devel-
opment Environments, Washington D.C., December 1992.

33

A Transforming Operator Declarations into a
Context-Free Grammar

To supplement the intuitive interpretation of the operator declarations given
in section 5, we show now how to construct a context free grammar G =
(N,Σ, S, P) with non-terminals N , alphabet Σ, start symbol S, and produc-
tions P , from a list of such declarations.

Let D = (D1, . . . , Dn) be a list of operator declarations given in the format
specified above, with Π = (π1, . . . , πn) as the list of their respective precedences;
let πm = max1≤j≤n πj . Remember that the precedences are pairwise distinct.

First, we define the set of terminal symbols Σ. Start out with Σ = ∅. Then
for each operator declaration Di, 1 ≤ i ≤ n,

• if Di declares a unary prefix or postfix operator, add its operator symbol
to Σ

• if Di declares a unary outfix operator, add its start and end symbols to Σ

• if Di declares a binary infix operator, add its operator symbol to Σ

• if Di declares a binary outfix operator, add its start, separator, and end
symbols to Σ

• if Di declares a constant, add its symbol to Σ

• for any list or multiset operand position, add the separator symbol to Σ

The set of non-terminals is N = {Nj ,LOpj ,Opj ,ROpj ,Restj | 1 ≤ j ≤
πm} ∪ {Nerr}; the start symbol is Nπm .

It remains to define the set of productions P . Initially, let P contain precisely
one production for every non-terminal Ni and one for Nerr .

For i > 0, this production is Ni → Ni−1, for i = 0, it is N0 → Nerr .
The production for Nerr is Nerr → Nerr , indicating a parse error (i.e., the

parsed input did not match the constructed grammar).
Now for every operator declaration Di, 1 ≤ i ≤ n:

• If Di declares a unary prefix operator ?, add the production

Nπi
→ ?Opπi

If the operand position of this operator is a singleton with precedence k,
add the production

Opπi
→ Nk

If the operand position is a list or multiset with separator “,” and prece-
dence k, add the two productions

Opπi
→ Nk

Opπi
→ Nk , Opπi

34

• If Di declares a unary postfix operator †, remove the production for Nπi

from P . Remember that a postfix operator’s operand position can only
ever be a singleton with a precedence less or equal to πi. If the precedence
equals πi, add the three productions

Nπi → Nπi−1Restπi

Restπi
→ †

Restπi → †Restπi

If we were to naively follow the schema used with prefix operators, we
would get a production of the form Nπi → Nπi†, i.e. a left-recursive rule.
To make parsing easier, we want to avoid this kind of rule.

If the operand’s precedence is not equal to πi, let it be k. Then add the
two productions

Nπi → Nk†
Nπi → Nk

• If Di declares a unary outfix operator with start symbol “(”, and end
symbol “)”, add the production

Nπi
→ (Opπi

)

The productions for the operand position are the same as with unary
prefix operators.

• if Di declares a binary infix operator ◦, remove the production for Nπi

from P . If the operator is associative, add

Nπi → Opπi
◦Nπi

Nπi → Opπi

and add operand position productions for Opπi
as above (note that in this

case, the two operand positions have the same attributes and hence can
be treated by one production).

If the operator is not associative, add

Nπi → LOpπi
◦ ROpπi

Nπi → LOpπi

and for each of LOpπi
and ROpπi

, add operand position productions as
for Opπi

before.

• if Di declares an associative binary outfix operator with start symbol “(”,
separator symbol “,”, and end symbol “)”, add

Nπi → (Opπi
, Restπi)

Restπi → Opπi
, Restπi

Restπi → Opπi

35

N14 → −N13

N14 → N13

N13 → [N14 ,Rest13]
N13 → N12

Rest13 → N14

Rest13 → N14 ,Rest13

N12 → (N14 ,Rest12)
N12 → N11

Rest12 → N14

Rest12 → N14 ,Rest12

N11 → tt

N11 → N10

N10 → ff

N10 → N9

N9 → a

N9 → N8

...

N0 → j

N0 → Nerr

Nerr → Nerr

Figure 17: Context-free Grammar for the Syntax of KSg

For non-associative binary outfix operators, add instead

Nπi → (LOpπi
, ROpπi

)

The productions for Opπi
in the associative case and LOpπi

and ROpπi

in the non-associative case are handled as for infix operators.

• if Di declares a constant κ, add

Nπi → κ

Obviously, the tuple G = (N,Σ, S, P) is a context-free grammar, since the
above procedure never introduces a rule with more than one non-terminal on
the left-hand side.

In fact, G is almost an LL(1) grammar, that is it can be parsed by a top-
down parser with one token of lookahead. The single exception is the rule for
Nerr , which is left-recursive.

We do not formally prove this statement but rather refer the reader to the
GraPE source code, where a deterministic parser with one token of lookahead
is constructed for any set of operator declarations. It treats the Nerr case as an
error, and hence recovers LL(1)-parsability.

As an example, we show in Figure 17 the grammar obtained from the oper-
ator declarations for KSg.

36

